2-2 Videos Guide

2-2a

- The derivative of f as a function of x

$$
\text { - } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Exercise:

- Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
f(x)=\sqrt{x-6}
$$

- Notation for derivatives
- $f^{\prime}(x)=\frac{d}{d x}[f(x)]=y^{\prime}=\frac{d y}{d x}=D_{x}$ all represent the derivative of f (or y) with respect to x
- $f^{\prime}(2)=\left.\frac{d y}{d x}\right|_{x=2}$ represents the derivative of $f($ or $y)$ evaluated at $x=2$
- Higher-order derivatives
- $f^{\prime \prime}(x)=y^{\prime \prime}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}$ represent a second derivative
- $f^{\prime \prime \prime}(x)$ is the third derivative, but for the fourth and higher, we use $f^{(4)}(x)$, etc.
- Position, velocity, acceleration, and jerk
- If $s(t)$ is a position function, then $v(t)=s^{\prime}(t)$ is velocity, $a(t)=s^{\prime \prime}(t)$ is acceleration, and $j(t)=s^{\prime \prime \prime}(t)$ is the jerk.

Exercises:

2-2b

- Use the given graph to estimate the value of each derivative. Then sketch the graph of f^{\prime}.
(a) $f^{\prime}(-3)$
(b) $f^{\prime}(-2)$
(c) $f^{\prime}(-1)$
(d) $f^{\prime}(0)$
(e) $f^{\prime}(1)$
(f) $f^{\prime}(2)$
(g) $f^{\prime}(3)$

2-2c

- The figure shows graphs of $f, f^{\prime}, f^{\prime \prime}$, and $f^{\prime \prime \prime}$. Identify each curve, and explain your choices.

2-2d
Definition: (differentiable)

- A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, b)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.
Theorem (statement and proof):
- If f is differentiable at a, then f is continuous at a.

